
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

57, 3, pp. 779-790, Warsaw 2019
DOI: 10.15632/jtam-pl/110243

A SIMPLE FORMULA FOR PREDICTING THE FIRST NATURAL

FREQUENCY OF TRANSVERSE VIBRATIONS OF AXIALLY LOADED

HELICAL SPRINGS

Krzysztof Michalczyk, Piotr Bera
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Cracow, Poland

e-mail: kmichal@agh.edu.pl; pbera@agh.edu.pl

A new formula that allows the first natural frequency of transverse vibrations of axially
loaded steel helical springs to be determined has been presented in the paper. The rela-
tionship is easy to use and allows finding the first natural frequency of spring vibrations
without the necessity of solving analytical or numerical models. According to the authors’
knowledge, this is the first such a formula and, consequently, when this frequency becomes
zero, it enables determination of the critical axial force or deflection causing the buckling
of the spring. The way of obtaining the described formula is presented in the paper. The
results of this formula are compared with those obtained using FEM and experiments. The
advantages, drawbacks and limitations of the proposed relationship are also discussed.
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1. Introduction

Springs can be treated as massless force elements with constant stiffness only at low excitation
frequencies (Lee and Thompson, 2001). This simple model is often used in works concerning the
analysis of low frequency vibrating machines or vibration reduction systems, e.g. (Cieplok, 2009;
Sapiński et al., 2011). However, this model is not suitable for vibrations at higher frequencies,
when there is a risk of excitation of spring resonance vibrations. It is then necessary to determine
the natural frequencies of such a spring in order to avoid the spring surge phenomenon. In the case
of cylindrical helical springs with a constant lead angle, the determination of natural frequencies
of longitudinal vibrations does not pose a significant problem, because these frequencies can be
estimated based on the well-known formula

fL =
n

2

√

k

mS
(1.1)

where: k – spring stiffness in N/m and ms – spring mass in kg, whereas the values of the
coefficient n equal to 1, 2, 3, . . . refer to the numbers of subsequent free longitudinal vibration
frequencies of a clamped-clamped spring. Such a model can be applied in a typical case, when
one end of the spring is supported on the base and the second one is mounted to the object (e.g.
machine) with a mass much greater than that of the spring. An analogical formula allowing the
natural frequencies of transverse vibrations of axially loaded clamped-clamped helical springs to
be determined does not exist in the available literature. The reason for that is the complexity of
the analytical models describing this problem and the necessity of applying numerical methods
to solve them. The development of such a formula would be very useful from the point of view
of designers and researchers developing or analyzing dynamic systems in which helical springs
are applied. Such a relationship could be widely used in engineering practice, because it would
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not require the knowledge of the methods for solving relatively complex analytical or numerical
models, and the ease of its use would compensate its approximate character.
The aim of this study is, therefore, elaboration of a formula enabling estimation of the first

natural frequency of transverse vibrations of clamped-clamped springs loaded with a static axial
force. In the first stage of the research, the model of the Timoshenko type equivalent beam
modified in (Michalczyk, 2015a) is utilized to calculate the values of the natural transverse
vibration frequencies of steel helical springs for a wide range of geometrical parameters and
relative axial deflections. In the second stage of the research, the obtained data set is utilized
in formulation of the relationship allowing estimation of the first natural transverse vibration
frequencies of axially loaded clamped-clamped steel springs of arbitrary – within a defined range
– geometrical parameters and the relative axial deflection.

2. Analytical model of helical spring transverse vibrations

In the papers where free vibrations of helical springs are investigated, three types of models
allowing the parameters of these vibrations to be determined are utilized. The first one is the
model in which the spring, which is actually a continuous system, is replaced by a periodic
discrete system in which the coils or their parts are replaced by masses connected by massless
elastic elements. Such a model is often applied in calculations of free longitudinal vibrations of
automotive helical springs with variable pitch (Flenker and Uphoff, 2005). The second model
is based on the concept of the equivalent beam (Haringx, 1949; Wittrick, 1966; Guido et al.,
1978; Kobelev, 2014; Michalczyk, 2015b). In the third model, the spring is treated as a spatially
curved rod. This model, due to its versatility, is widely presented in the literature, e.g. (Wittrick,
1966; Jiang et al., 1991; Stander and Du Preez, 1992; Becker et al., 2002; Yu and Yang, 2010),
however, it should be emphasized that the versatility of this model is accompanied by great
complexity and calculation difficulties, meaning that effective application of this model requires
the use of numerical methods to solve it, e.g. (Mottershead, 1980; Yildrim, 1999; Taktak et
al., 2008). The mentioned complexity and the necessity of using mathematical software whilst
solving this model mean that from the engineering application point of view it is easier and
faster to use FEM software, with which most of the aforementioned authors compare their
results anyway. Moreover, in most of the theoretical studies concerning spring vibrations where
the mentioned model is used, the authors do not take into account changes in the lead angle in
the vicinity of end coils, assuming that the spring consists only of active coils, which imposes
obvious simplifications on the boundary conditions. It has been shown in the paper (Michalczyk,
2015a) that the influence of end-coil shape can be so significant that application of the model
treating a spring as a spatially curved rod, but with constant geometrical parameters over the
entire length of the wire, may not produce results more accurate than the equivalent beam model,
especially with regard to the first frequency of transverse vibrations. The authors of the paper
(Liu and Kim, 2009) highlighted the problem of the influence of end-coil shape on the natural
longitudinal vibration frequencies of valve springs, proposing a new method for calculating the
first transversal frequency, based on the assumption that the torsion stiffness of end coils can be
modelled by replacing them with elastic clamping of active coils.
As mentioned above, the model of a modified equivalent Timoshenko beam is utilized in

further considerations. The model is widely described in the references cited above and thus
only these equations which are necessary to maintain the transparency of derivation are quoted
below.
The equation describing natural transverse vibrations of statically axially loaded helical

springs can be written in the following form (Haringx, 1949)
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where: ψ – angle of equivalent beam axis deflection resulting only from bending, x – coordinate
corresponding to the axis of the non-deflected spring, P – static axial force compressing the
spring, me – linear density of the axially loaded equivalent beam, α and β – bending and
shearing rigidities of the equivalent beam, respectively, rg – mass radius of gyration of the
equivalent beam cross-section

rg = R

√
2
2

(2.2)

where R denotes a half of the nominal diameter of the spring. A few different formulas describing
the bending α and shearing β rigidities can be found in the literature. The most recent and
accurate formulas were proposed by Krużelecki and Życzkowski (1990), and their approach is
utilized in further calculations. These rigidities are expressed in the following form in the cited
paper:

α =
2EJ sin δ
2 + ν cos2 δ

β =
EJ sin δ

R2(1 + ν sin2 δ)
2πn

∫

sin2 ϕ dϕ
(2.3)

where: E – Young’s modulus of the spring wire material, J – moment of inertia of the wire
cross-section (considerations are restricted to the circular cross-section), ν – Poisson’s ratio, δ –
lead angle of the axially loaded spring, whereas ϕ denotes the angle plotted by the leading radius
of a helix between the vector of the transversal force and the arbitrary cross-section of the spring
wire. It is assumed for the sake of simplicity that the radius R is constant and equal to half of
the nominal spring diameter and the number of working coils n0 is also constant, equal to an
integer or an integer and a half.
The form of the solution to equation (2.1) depends on whether the searched natural frequency

value is higher or lower than the cut-off frequency ωb. Further considerations are limited to the
case when the searched value of the first natural transversal vibration frequency is lower than the
value of the cut-off frequency ωb, which is expressed in the following form (Michalczyk, 2015a)
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√

β
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(2.4)

On the assumptions described above and applying clamped-clamped boundary conditions, the
frequency equation may be written as (Michalczyk, 2015a)
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C2 =
− cosh(k1L) + cos(k2L)

sinh(k1L) +
Ak1+Bk31
−Ak2+Bk32

sin(k2L)
C1 C3 = −C1 C4 =

Ak1 +Bk31
−Ak2 +Bk32

C2

whereas C1 denotes an arbitrary constant greater than zero.
Solving equation (2.5) numerically, one can obtain the frequencies of natural transverse

vibrations of a clamped-clamped spring loaded with the static axial force P , which can be
expressed as a product of the relative compression of the spring and its compression rigidity.

3. Determination of a formula allowing direct calculation of the first natural

frequency of transverse vibrations

The results of the analytical model described in the previous section are used in the development
of the desired formula. The appropriate equations are implemented in the Maple environment and
solved numerically. The following characteristic parameters influencing the natural frequencies
are investigated: d – wire diameter; C – spring index equal to the ratio of the mean spring
diameter D to the wire diameter d; λ – spring slenderness equal to the ratio between the free
length L and the mean spring diameter D; δ – spring helix angle and ζ – relative compression
of the spring. The range of variation of the listed parameters is presented in Table 1. It is also
assumed that the minimum number of active coils is 3. This limitation results from the fact that,
with the decreasing number of coils, the stiffness and inertia properties of the spring become
more and more nonuniform, whereas the model of the equivalent Timoshenko beam assumes that
these properties are axisymmetric. The assumption of the minimum number of coils means that
in the case of a spring with the lowest slenderness (λ = 2), the highest value of the helix angle
δ = 12◦. In the calculations performed, typical material properties of spring steel are assumed:
the Young’s modulus E = 209000MPa, Poison’s ratio ν = 0.3 and density ρ = 7800 kg/m3.

Table 1. The range of variation of spring parameters

d [m] C [–] δ [◦] ζ [–] λ [–]

0.0005-0.02 3-12.54 3-15 0-0.5 2-10

Thirty data sets have been used in calculations. These sets were obtained by a combination
of 6 values of wire diameter d (0.0005m, 0.00113m, 0.00258m, 0.00585m, 0.01327m and 0.02m)
and 5 values of ratio C (3, 4.29, 6.13, 8.77 and 12.54). Each single set was computed for constant
values of the wire diameter d and the spring index C, while the other parameters varied. The
tested values of the helix angle amounted to: 3◦, 6◦, 9◦, 12◦ and 15◦, whilst the values of
slenderness λ were equal to 2, 4, 6, 8 and 10. The tested values of relative compression ζ were
equal to 0, 0.1, 0.2, 0.3, 0.4 and 0.5 when buckling did not appear. When buckling occurred
before the relative compression reached 0.5, the tested values were changed, however, in each set
6 values were always tested. Finally, by solving equation (2.5) numerically, the total number of
4320 results in the form of the first natural frequency of transverse vibrations fTA was obtained.
As mentioned above, it is not possible to derive the desired formula strictly and directly from

the analytical model presented in Section 2. Thus, only approximate methods can be applied.
Application of an artificial neural network was considered, however, the very large range of
output, which in this case was the natural frequency, resulted in very poor performance. In such
a case, this method cannot provide results with a sufficiently good agreement with the results
of the analytical model within a wide range of variability of these parameters. The formula for
predicting the first natural frequency of transverse vibrations of the axially loaded spring fT can
be expressed as a function of five parameters, as listed in Table 1

fT = f(d,C, δ, λ, ζ) (3.1)
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Analysis of the results of numerical calculations shows that, in each of the 30 investigated data
sets, the highest value of the first natural frequency fmax for an uncompressed spring (ζ = 0)
occurs at the lowest spring slenderness (λ = 2) and the highest value of the helix angle (δ = 12◦).
These values are presented graphically in Fig. 1.

Fig. 1. The maximum fmax values in each of 30 data sets as a function of d and C

As shown in Fig. 1, for each tested spring index C, the curve fitting procedure was conducted
using the least squares method. Each line in Fig. 1 represents a hyperbola that can be expressed
in the form

fmax =
a0
d

(3.2)

The values of the coefficient a0 in equation (3.2), for subsequent values of the spring index C,
are shown in Table 2.

Table 2. Values of the coefficient a0 in relation to the spring index C

n 0 1 2 3 4

Cn 3 4.29 6.13 8.77 12.54
a0n 15.578 7.618 3.731 1.823 0.892

It can be noticed that the consecutive values of C and a0 create a geometric series. For C, the
value of the geometric series equals q = 1.43, while for the coefficient a1 the value q = 0.489 =
1/2.044.
Thus, the maximum frequency fmax depending on the variable d and the fixed values of C

equals

fmax =
15.578
d

1
2.044n

(3.3)

where n is defined by

C

3
= 1.43n (3.4)

The formulas above refer to a discrete set consisting of 5 elements. In order to calculate the fmax
for any value from the whole range of both d and C, it is necessary to make a transformation
that logs both sides of the equation

log
C

3
= n log 1.43 (3.5)
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Finally, after proper transformations, we obtain the relationship describing the maximum fre-
quency fmax as a function of the wire diameter d and spring index C

fmax =
15.578

d 2.044
log(C/3)
log 1.43

∼=
140d
D2

(3.6)

The frequency fT values obtained by means of numerical calculations for all tested combinations
of the parameters d, C, δ, λ and ζ can be divided by appropriate values of fmax. As a result,
one can obtain the normalized frequencies fn with the same values in each of the 30 data sets,
for the same values of δ, λ and ζ

fn =
fT
fmax

(3.7)

This significantly simplifies further data analysis. The normalized frequency fn depends on
the δ, λ and ζ values and the relationship between these parameters and the frequency fn has
to be determined.
The influence of the change in the helix angle δ on the normalized frequency fn is highly

linear and independent of the other parameters. An increase in the δ angle is accompanied by
a proportional increase in the normalized frequency. The influence of the last two parameters λ
and ζ on the normalized frequency fn cannot be considered separately, because a change in the
value of one of them changes the character of action of the other. This is illustrated in Fig. 2,
which shows the influence of the parameters λ and ζ on the frequency fn.

Fig. 2. The normalised frequency fn as a function of the slenderness λ and relative compression ζ

Thus, the frequency fn can be presented in the form of a product

fn = c1(δ)c2(λ, ζ) (3.8)

where the component c1 takes the form

c1 =
δ

12◦
(3.9)

For the following analysis, only frequencies corresponding to δ = 12◦ were considered, since
the first factor c1 was determined for the maximum frequency that always occurs at an angle
of δ = 12◦. The influence of the parameters λ and ζ on the frequency fn is described by the
factor c2, which is a non-linear function. To obtain such a function, shown in Fig. 3a, two separate
functions, f1(λ, ζ) (Fig. 3b) and f2(λ, ζ) (Fig. 3c), are used.
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Fig. 3. Description of the coefficient c2 as a composition of two separate functions f1(λ, ζ) and f2(λ, ζ)

The linear function f1(λ, ζ), which is designated based on the assumption that f1(λ, ζ) is
tangent to c2(λ, ζ) at ζ = 0, is described by the formula

f1(λ, ζ) = a1(λ)ζ + b1(λ) (3.10)

The proper values of the coefficients a1(λ) and b1(λ) are presented in Table 3.

Table 3. Coefficients a1(λ) and b1(λ) for subsequent values of λ

λ 2 4 6 8 10

a1(λ) 0.18 −0.04 −0.15 −0.20 −0.26
b1(λ) 1 0.3366 0.1633 0.0952 0.0620

The coefficient a1(λ) is approximated, with use of the mse method, by a hiperbolic function

a1(λ) =
3

λ+ 2.43
− 0.5 (3.11)

The coefficient b1(λ), marked in Fig. 2, is a point of intersection of the linear function f1(λ, ζ)
with the vertical axis. For the whole range of λ (and ζ = 0) (Fig. 2), b1(λ) is determined with
use of Thiele’s interpolation curve-fitting method, which in this case gives the most accurate
results compared to other methods like spline, polynomial or least squares interpolation, and is
described as

b1(λ) =
583− 9.45λ + 0.293λ2

82.4 + 95.2λ+ 73.2λ2
(3.12)

To decrease the frequency in the final range of compression, the power function f2 is introduced

f2(λ, ζ) = 1− [a2(λ)ζ]p (3.13)

To limit the number of variables in the final formula, thus simplifying it as much as possible,
f2(λ, ζ) was fitted with the assumption that the power p is a constant rather than a variable.
The results of approximation with use of mse are shown in Table 4.
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Table 4. Coefficients a2(λ) and p for subsequent values of λ

λ 2 4 6 8 10

a2(λ) 0.35 0.96 2.44 5.1 8.2
p 6 6 6 6 6

To approximate the coefficient a2(λ) as a function of λ, the authors used the logsig function,
which resulted in the formula

a2(λ) =
12.02

1 + 2−0.77(λ−8.57)
(3.14)

Finally, the formula for the transverse frequency fT of the helical spring, after simplifying the
fractions, is

fT =
11.667dδ
D2

[583− 9.45λ + 0.293λ2

82.4 + 95.2λ + 73.2λ2
+
( 3
λ+ 2.43

−0.5
)

ζ
][

1−(
12.02ζ

1 + 2−0.77(λ−8.57)

)6]

(3.15)

The frequencies fT obtained with developed formula (3.15) were compared with the frequen-
cies fTA obtained by numerical solving of the analytical model. The relative difference ∆f
between the frequencies fTA and fT can be defined as follows

∆f =
∣

∣

∣

fTA − fT
fTA

∣

∣

∣ · 100% (3.16)

The value of the relative difference ∆f depends only on the spring slenderness λ and relative
compression ζ. The results of calculations of ∆f in the whole working range of λ and ζ is shown
in Fig. 4.

Fig. 4. The relative difference ∆f as a function of the spring slenderness λ and relative compression ζ

Analysing Fig. 4, it can be noticed that the range of the λ and ζ parameters, for which
the relative difference ∆f is small, is very wide. This difference, however, increases with higher
values of λ and ζ which are accompanied by frequencies approaching to zero. The curve limiting
the plot in Fig. 4 from the top-right corner represents the line of spring buckling obtained on
the basis of the analytical model. The result is that even a small absolute difference between the
frequencies fTA and fT gives a high value of ∆f .
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4. Comparison of the results obtained using the derived formula with those

obtained using FEM and experiments

Relationship (3.15) was developed on the basis of data obtained from the analytical model,
in which the helical spring was modelled using the concept of an equivalent Timoshenko beam.
This model has axially symmetrical properties regarding inertia and stiffness and, thus, does not
take into account the effects associated with the spring wire curvature and the real boundary
conditions. In order to assess the accuracy of the developed formula, its results for selected

Table 5. Comparison of the first natural frequencies of transverse vibrations obtained from
FEM (fI and fII) with the results of developed formula (3.15)

No.
d D h

n δ0 ζ
fI (FEM) fII (FEM) fT (3.15)

[mm] [mm] [mm] [Hz] [Hz] [Hz]

1a 7.256 0 83.056 85.907 84.616
1b 10 100 40 5 7.256 0.25 84.638 87.757 88.366
1c 7.256 0.5 86.335 89.839 92.114
2a 7.256 0 78.475 80.669 78.971
2b 10 100 40 5.25 7.256 0.25 80.132 81.899 82.405
2c 7.256 0.5 81.885 83.167 85.836
3a 7.256 0 73.101 76.940 73.852
3b 10 100 40 5.5 7.256 0.25 74.75 77.591 76.983
3c 7.256 0.5 76.611 78.186 80.11
4a 7.256 0 68.023 72.347 72.038
4b 10 100 40 5.75 7.256 0.25 69.306 72.836 72.038
4c 7.256 0.5 70.747 73.530 74.873
5a 3.642 0 42.476 42.843 42.471
5b 10 100 20 10 3.642 0.25 43.451 43.851 44.354
5c 3.642 0.5 44.534 44.979 46.235
6a 7.256 0 28.299 28.447 28.477
6b 10 100 40 10 7.256 0.25 26.090 26.178 27.764
6c 7.256 0.5 21.785 21.815 26.721
7a 10.8125 0 20.501 20.525 20.586
7b 10 100 60 10 10.813 0.2 14.343 14.358 16.725
7c 10.8125 0.3 7.361 7.398 12.848
8a

10 100 40 15

7.256 0 13.816 13.823 13.815
8b 7.256 0.2 9.650 9.668 11.224
8c 7.256 0.3 4.789 4.796 8.622
8d 7.256 0.32 2.561 2.568 7.707
9a

5 100 40 15

7.256 0 6.912 6.915 6.907
9b 7.256 0.2 4.812 4.814 5.612
9c 7.256 0.3 2.355 2.357 4.311
9d 7.256 0.32 1.203 1.226 3.854
10a

20 100 40 15

7.256 0 27.571 27.588 27.629
10b 7.256 0.2 19.429 19.437 22.447
10c 7.256 0.3 10.178 10.205 17.243
10d 7.256 0.32 6.293 6.334 15.414

spring parameters and deflections were compared with the results of FEM analyses, in which
the spring was modelled as a spatially curved bar. The analyses were performed in the ANSYS
environment. The model was built using BEAM 189 elements, which take into account the effects
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of shearing and rotational inertia of cross-sections. In the analyses concerning springs subjected
to a non-zero static deflection, the perturbation method was utilized, taking into account large
deflection effects. A comparison of FEM analyses results with those obtained from equation
(3.15) is presented in Table 5.
It can be noticed that the results of FEM analyses and those of formula (3.15) are generally

in very good compliance, especially for low and moderate relative compression. The differences
between the obtained results become larger for high relative compression values and high values
of slenderness. It can also be noticed that the fI and fII frequencies obtained for each case from
FEM analyses have very similar values, regardless of the number of coils. The largest differences
between corresponding the fI and fII values were obtained for n = 5.75.

Fig. 5. Experimental test rig with one of the tested springs, two PCB322 accelerometers mounted on it,
and a KSD-400 universal vibration analyzer (a), six investigated springs (b) and one of the compression

springs supported on flat plates (c)

Experimental tests using six different springs were also performed. The test rig is shown in
Fig. 5a, and the tested springs are shown in Fig. 5b. Three of these springs (I, II and III in
Fig. 5b) were industrial compression springs with partially square and ground ends, whilst three
others (IV , V and V I) were specially prepared springs with open ends and all coils active. The
first three springs were placed between flat supporting plates as shown in Fig. 5c, and the last
three springs were fixed in special grippers, visible in Fig. 5a. For each of the tested springs, the
tests were conducted at two values of relative compression. The first three springs were initially
compressed in order to achieve the adequate gripping friction force. The last three springs were
not compressed initially as they were fixed using specially prepared grippers. The second value of
relative compression was the same in all the cases and equalled 0.25. A non-zero initial condition
on the transverse displacement was imposed to the middle coils, and natural transverse vibration
time courses were recorded using two PCB Piezotronics model 352C22 miniature accelerometers
and a Sensor KSD-400 vibration analyser. Each test was conducted at six different directions of
the initial displacement condition, changing by every 30◦ in order to find the first two natural
frequencies of transverse vibrations. Table 6 presents a comparison of the results of experimental
tests with those obtained using equation (3.15).
It can be noticed that the largest differences between the results of experiments and those

of formula (3.15) occur for springs I, II and III, whilst for the last three springs the obtained
results are very consistent. The greater discrepancy in the first case is results from the effect
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Table 6. Comparison of the results of experimental tests with those obtained using equation
(3.15) for six investigated springs

No.
d D h

n δ0 ζ
fI (exp.) fII (exp.) fT (3.15)

[mm] [mm] [mm] [Hz] [Hz] [Hz]

Ia 4 20.5 7.65 12.75 6.77◦
0.1 171.38 172.86 180.5

Ib 0.25 168.63 170.36 170.9
IIa 7 49 19.3 14.5 7.15◦

0.1 35.7 37.24 40.2
IIb 0.25 33.21 35.38 34.04
IIIa 7 113 80 5 12.7◦

0.05 25.26 26.34 33.626
IIIb 0.25 28.18 28.71 33.665
IVa 4 50 28.6 10.4 10.32◦

0 32.24 32.33 31.934
IVb 0.25 23.55 23.79 23.985
Va 4 70 28.6 10.5 7.41◦

0 21.11 21.69 21.032
Vb 0.25 19.97 20.15 20.077
V Ia 4 88 28 10.5 5.78◦

0 15.52 15.75 15.876
V Ib 0.25 15.79 16.02 16.049

of end-coils. The end-coils were not taken into account in calculations and, as a result, higher
values of frequencies were obtained from equation (3.15) than those from experiments.

5. Conclusions

The formula developed in the paper, allowing the first natural frequency of transverse vibrations
of clamped-clamped and axially loaded with a static force helical springs to be predicted, is,
according to the authors’ knowledge, the first such a formula in the available literature. It allows
calculation of both the first natural frequency of a spring as well as determination of the relative
compression at which the spring buckling will occur. The formula can be widely used among
designers of dynamical systems, where helical steel springs are the most commonly used type of
elastic joints, significantly facilitating their calculations. The results obtained on the basis of the
developed relationship demonstrate very good agreement in a wide range of the spring geometric
parameters and its relative compression with the results of the analytical model utilizing the
Timoshenko equivalent beam concept, those of FEM analyses and the performed experiments.
An important advantage of the developed formula is the lack of necessity to use expensive
software and knowledge of complex analytical or numerical models in order to determine the
first natural frequency of transverse vibrations.
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